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Abstract

In this paper, Belousov-Zhabotinsky (B-Z) reaction model with Caputo fractional time
derivative is investigated by the fractional reduced differential transform method (FRDTM)
methods, an iterative technique. The outcome using FRDTM method reveals an efficiency with
high accuracy and minimal computations for numerical solutions. Moreover, the solution
profiles which demonstrate the behavior of the obtained result are presented.
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Preliminaries

The applications of fractional calculus have been established in various connected
bifurcation of science and engineering such as found in quantum mechanics (Joseph et al.,
2012), random walk (Hilfer and Anton, 1995), astrophysics (Tarasov, 2006), chaos theory
(Baleanu et al., 2017), electrodynamics (Nasrolahpour, 2013), viscoelasticity (Mainardi, 2010),
nanotechnology (Baleanu, et al., 2010) and other field (Chen, et al., 2013). In the twentieth
century, (Caputo, 1969, Liao, 1998, Podlubny, 1999, Miller and Ross, 1993) have described
the essential properties of fractional calculus. In this present work, a nonlinear oscillatory
system called the Belousov-Zhabotinskii, (B-Z) with Caputo fractional time derivative is
investigated by the fractional reduced differential transform method (FRDTM) methods, an
iterative technique. The B-Z is a family of oscillating chemical reactions and is interesting
because this reaction is a chemical reaction which can demonstrate both temporal oscillations
and spatial traveling concentration waves that are accompanied with dramatic color changes
(Gibbs, 1980). The simplified Noyes-Field fractional model for the B-Z reaction is given as
(Ye, etal., 1987):
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at?=wlat—f+8§Q+p—p2—épq, O<p<l,

0'q o%p

o =w2¥+vq—lpq, (1)
p(X’O) :gl(x)!

q(x,0) =9g,(x), xeR, t>0,

where y, and v, are the diffusing constants for the concentration p and q respectively, y
and P are constants, & and A =1are positive parameters and pis the fractional order.

Fractional nonlinear problems are often more difficult to solve because its operator is
defined by integral. However, different computational schemes are developed and have been
used to investigate both the exact and numerical solution of these fractional problems. Some of
the used methods are the Adomian decomposition method (ADM) (Adomian, 1994, Mainardi,
2010), variational iteration method, (VIM) (Das, 2009, He, 1998), homotopy perturbation
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method (HPM) (He, 1999, He, 2003)), residual power series method, (RPSM) (Senol, et al.,
2019), Sumudu decomposition method (SDM) (Eltayeb and Kilicman, A 2012), homotopy
analysis method, (HAM) (Liao, 2004), Laplace decomposition method, (LDM) (Khuri, 2001,
Jaradat et al., 2018). These methods have used modified version of generalized Taylor power
series method to construct numerical solution to the time-fractional B-Z system for the case
when the diffusing constants v, =y, =1and the parameters y=p=0.

This paper is organized as follows. In Section 1, we present basic definitions and
preliminaries of B-Z reaction model. In Section 2, we state the analysis of time-fractional
Belousov-Zhabotinsky reaction (TFB-Z) model. In Section 3, we give the solution for time-
fractional Belousov-Zhabotinsky (TFB-Z) system of equations and present the solution profiles
which demonstrate the behavior of the obtained results.

Definition
The Riemann-Liouville, (R-L) fractional integral of order p(u>0) of a function
Q(x,t)eC,,, m=>-1 isgiven as (Dhaigude and Nikam , 2012, Kilbas, et al., 2006),

1 t
Fp(x,t) =—— | (t—e)*'p(x,e)de, p,t>0, (2)
FQO!
where T denotes the classical gamma function and J°p(x,t) = p(x,t) . For example,
A Ch Ry 3)
MNu+l+o)

Definition

In the Caputo’s sense, the fractional derivative of p(x,t) (denoted by D"p(x,t)) for
o—l<u<o,peN isdefined as (Kilbas, et al., 2006),

((P) X,t, — ,
Drpx, =P oD m=e @
I, e-l<p<e,

where

J(pfup(cp) (X, t) —

M- j.(t—S)wlp(q’) (x,e)de, p,t>0. (5)

Definition

The Laplace transform, (LT) of a Caputo fractional derivative is given as (Das, 2009,
Kilbas, et al., 2006),

L[D!p(x,t)] =s"L[p(x,t)]- nZ_ls“’m’lpm(x, 07), n-l<p<n. (6)

m=0
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Analysis of the Proposed Method

Consider the time-fractional Belousov-Zhabotinsky, (TFB-Z) (1) with the diffusing
constants for the concentration, ¥, =¥, =1,

o'p _o%p
ot ot
o'q_o%p
ot ot
p(x,O) = gl(x),
q(x,0) =g,(x).

+BEq+p—p* —Epq, O<p<l,

+vq-Apq, (7)

Analysis of FRDTM

The functions p(x,t) and q(x,t)are analytic and continuously differentiated in the
interested domain. In regard to the properties of differential transform, functions p(x,t) and
g(x,t) can be expressed as

PO = 2P, 0O™, Ak D) = X Qu(0t™, ®
where
3 1 o™p(x,1) 3 1 o™p(x,1)
P (%) = C(mp+1) { o™ L ’ Q)= C(mp+1) [ o™ L' ®)

Here, nis the fractional order and the t-dimensional spectrum functions P, (x)and Q,(x) are
respectively the transformed functions of p(x,t)and q(x,t). According to Table 1, the
iteration formulas for (7) is

2 m m
F(mu+u+1) I:)(erl) (X) = a F;m +B&Qm + I:)m _Zprp(m—r) _&z PrQ(m—r)’
m},L +1 8t r=0 r=0 (10)
r(mp+p+1) o°Q -
-~ = = = X) = m + -A> P .
m“ +1 Q(m+l)( ) atz YQm g{; rQ(m—r)

From initial condition (8), we write

Po=P(X,0),  Q;=q(x,0). (11)
Substituting (11) into (10), we obtain the P, (x) and Q,,(x) values. The inverse
transformation of the sets {P, (x)}*_, and {Q, (xX)}:_, are respectively

PG =D P (™, Q() =30, (™, 12)

and
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PO, = IMPO( =D P (0™, a(x)=lmMQV(x,) =3 Q,(t™,  (13)

m=0

which gives the exact solution of (7).

Table 1: The essential operations of FRDTM

Functional Form | Transformed function

mg
p Py = | 0P
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W =o,p+0,q w, =o,P. +a,Q,
W=pq m =2 PQumy = ZPQ(m o)
t=0
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m r(mu+1) (m+r)
Wzan W _0'R,
ox" mooxY
w =X’ : 1, m=s
W =x'8(m-s), éS(m—s):{O s
w=e" AT

W =2

m

m!

Solution for TFB-Z system of Equations

In this section, application of the FRDTM proposed method to the time-fractional
Belousov-Zhabotinsky (TFB-Z) system of equations is presented.

Example 1

Consider the nonlinear TFB-Z system at y = =0, then (7) reduced to

o'p _o%p
6tf &2+B&q+p p* —&pa, O<p<l,
(14)
o'q 0%
oo P

with the initial condition



University of Mandalay, Research Journal, Vol. 11, 2020 241

(1—x)eﬁx {e & +2J

1

p(x,0) :?, q(x,0) = E 5 (15)
Le eX+1] F{e e 11
The exact solution of (14) when p=1is
5, (1—x)eﬁ ST J
p(x. ) =er— (x,0) = . (16)
{e6+e3} &[ee+e3J
Here A =1is a positive parameter.
FRDTM Solution:
From (10) withy =B =0, we have
2 m m

__D(mu+1) 62 _
Qi (X) = s e D) XZPQ(m ogs M=01231L.

Using the initial condition (11), we obtain the successive solutions

(1—>L)esz (ef +2J
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25)% (& [2eJT 1]

P2: sz

2517 (12, e\EX 2ej§x—1J

18F(2u+1)Le e +1] 18ar(u+1)[e ex+1]
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2760 (n+1)" T (4u+1)(e'® +1)° 2760 (+1)' Tu+ 1T (4u+1)('® +2)
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Similar expression forP, (x,t) and Q. (x,t)respectively for m=5,6,7,L can be achieved.
Then, for system of (14), the FRDTM series solution is presented by (12).

|
Example 2
Consider the nonlinear TFB-Z system at y=A and B =1, then (7) reduce to
o'p o
IP_R eqrp—p?—gpa, O<us<l,
ottt ot (18)
o'q o%p
v o AT
with the initial condition
1 A1
PO = k0= (19)
(eVe +1)? gV +1)°
The exact solution of (18) when pu=1is
5, 5y
2 _ 2
PO =, ooy =—De (20)
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where A =1 is a positive parameter. [
FRDTM Solution:
From (10) with y=2X and B =1, we have

I(mp+1) [6°P, m m
P PPuy—ED P ,
F(mu+u+1){ TR ; r(m-n };; rQ(m—r)}

B (mu+1) 8Q o\
Q(m+l)() F(mu+u+1) 7\’Qm }\‘gprQ(m—f) '

|:>(m+1) (X) =
(21)

Using the initial condition (11), we obtain the successive solutions
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27E0 (n +1)2 I'(4p+1) (e\/:X +1)° 2760 (n+1)T(2p+1)I (4p+1) (e\/:X +1)’

=, [, 7 o[
L2500, —1)er (124e\/T 100605 4+ 85015 —4) 625000 —1)e\/: (17eZK +1)
d .
648EL (4p+1) (e\/: +1)°

al
6

32421 (4u+1) (efx +1)°

Similar expression forP_ and Q, respectively for m=5,6,7,L can be achieved. Then, for
system of (14) with initial condition (16), the FRDTM series solution is presented by (12).
|

Remark
Assume that q :Llp in (18), then the system reduces to the time-fractional Fisher's

equation
o'p _o%p 2
(Fisher, 937), where

which represents a model for the propagation of a mutant gene
p(x,t) denotes the population density, p(1—p) stand for the population supply due to births and
deaths and the birth rate A (Fisher, 1937). The exact solution of (22) for the case when p=1is
obtained from (20) and is given for positive parameter A as
Sk, 2
e? 1 A 5A
p(x,t) M({tanh (\/;X—Et]—ll : (23)
e'® +e?

FRDTM Solution: Q¥ (z,t), (n=1,£ =2,A =3)

FRDTM Solution: P®(z,t), (u=1,6 =2,A=3)

"

Figure 1: The among FRDTM solution P“(x, t) and Q“(x, t) for Example 1.
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P(If}fl)'ll\l Solution: (t =0;6'=2,X= 3) (1:-13‘,0]:“1 Solution: (t =0,=2,\= 3)

1

0.75
= .50
=0.25
=0.10

Figure 2: Solution profile with different pvalues when t=0 for Example 1.
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Figure 3: Solution profile with different pvalues when t=1 for Example 1.
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Figure 4: Solution profile with different pvalues when t =3 for Example 1.
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4 .
Pﬁ"}wr.‘\/ Solution: (t=5,£=2,A=3) Qgﬂmn! Solution: (t= 5,6 =2 A= 3)

Figure 5: Solution profile with different pvalues when t =5 for Example 1.

FRDTM Solution: PW(z,t), (p =1, =2, =2) FRDTM Solution: Q@ (z,t), (n=1,6 =2,A =2)

Figure 6: The among FRDTM solution P“(x, t) and Q“(x, t) for Example 2.

(4) PO — —
Solution: (t=0,£ =2, =2) Qrrpry Solution: (¢=0,{=2,A=2)

(4)
PI-‘HDT:\!
——1
@i = 0.75
- - =p=0.50
ol =0.25
e =0.10

Figure 7: Solution profile with different uvalues when t=0 for Example 2.
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Pﬁwru Solution: (t=1,§=2,A=2) 08 . :
: pr—r—
&t

Figure 8: Solution profile with different pvalues when t=1 for Example 2.

Pﬁ}([)l’;\] Solution: (t =2, =2,A=2) y'}fmu\/ Solution: (=2, =2,A=2)
147

——p =1 By ——p =1

25+ 2 @ i: = 23‘8 12+t A‘ @y = 0.75
- =p=01 - - =p=0.50
o %‘ e = 0.10 1F @’5 o =0.10
e e > TR
I ! 21 ; S 2 : 2y

q(z,t)

Figure 9: Solution profile with different pvalues when t=2 for Example 2.
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Figure 10: Solution profile with different pvalues when t =5 for Example 2.
|
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Conclusion

Using reliable technique, namely, the fractional reduced differential transform
method (FRDT) solved the time-fractional Belousov-Zhabotinsky system. The outcomes of
this research give the very effective and accurate (FRDT) method which had a wide ranging
feasibility. Therefore, it can solve a lot of strong nonlinear fractional and classical PDEs that
arisen in physics, chemistry, biology, mathematics, engineering, and so on.
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Appendix

Appendix 1

It should be noted that the exact solution for Example 1 and Example 2 can also have the following
forms:

* For Example 1:

2
e gy ) 4
e'® +ef

e x o
(1—%)9\/2 [e 6 +2e6t]
A

i, 5, 2 4
gle's +eb

* For Example 2:
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[\FX 51, 24 12
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