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Abstract 

In this paper, Belousov-Zhabotinsky (B-Z) reaction model with Caputo fractional time 

derivative is investigated by the fractional reduced differential transform method (FRDTM) 

methods, an iterative technique. The outcome using FRDTM method reveals an efficiency with 

high accuracy and minimal computations for numerical solutions. Moreover, the solution 

profiles which demonstrate the behavior of the obtained result are presented. 
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Preliminaries 
The applications of fractional calculus have been established in various connected 

bifurcation of science and engineering such as found in quantum mechanics (Joseph et al., 

2012),  random walk (Hilfer  and  Anton, 1995), astrophysics (Tarasov, 2006), chaos theory 

(Baleanu et al., 2017), electrodynamics (Nasrolahpour, 2013), viscoelasticity (Mainardi, 2010), 

nanotechnology  (Baleanu, et al., 2010) and other field (Chen, et al., 2013).  In the twentieth 

century, (Caputo, 1969, Liao, 1998, Podlubny, 1999, Miller and Ross, 1993) have described 

the essential properties of fractional calculus. In this present work, a nonlinear oscillatory 

system called the Belousov-Zhabotinskii, (B-Z) with Caputo fractional time derivative is 

investigated by the fractional reduced differential transform method (FRDTM) methods, an 

iterative technique.  The B-Z is a family of oscillating chemical reactions and is interesting 

because this reaction is a chemical reaction which can demonstrate both temporal oscillations 

and spatial traveling concentration waves that are accompanied with dramatic color changes 

(Gibbs, 1980). The simplified Noyes-Field fractional model for the B-Z reaction is given as 

(Ye, et al., 1987): 
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where 1  and 2  are the diffusing constants for the concentration p  and q  respectively,   

and   are constants,  and 1  are positive parameters and  is the fractional order.  

 Fractional nonlinear problems are often more difficult to solve because its operator is 

defined by integral.  However, different computational schemes are developed and have been 

used to investigate both the exact and numerical solution of these fractional problems. Some of 

the used methods are the Adomian decomposition method (ADM)  (Adomian, 1994, Mainardi, 

2010), variational iteration method, (VIM) (Das, 2009, He, 1998), homotopy perturbation 
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method (HPM) (He, 1999, He, 2003)),  residual power series method, (RPSM) (Senol, et al., 

2019),  Sumudu decomposition method (SDM) (Eltayeb and Kilicman, A 2012), homotopy 

analysis method, (HAM) (Liao, 2004),  Laplace decomposition method, (LDM) (Khuri, 2001, 

Jaradat et al., 2018).  These methods have used modified version of generalized Taylor power 

series method to construct numerical solution to the time-fractional B-Z system for the case 

when the diffusing constants 1 2 1   and the parameters 0    . 

 

 This paper is organized as follows. In Section 1, we present basic definitions and 

preliminaries of  B-Z reaction model.  In Section 2, we state the analysis of time-fractional 

Belousov-Zhabotinsky reaction (TFB-Z) model.  In Section 3, we give the solution for time-

fractional Belousov-Zhabotinsky (TFB-Z) system of equations and present the solution profiles 

which demonstrate the behavior of the obtained results. 

 

Definition  

  The Riemann-Liouville, (R-L) fractional integral of order ( 0)    of a function 

mQ(x, t) C , m 1,    is given as (Dhaigude and Nikam , 2012, Kilbas, et al., 2006),  
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where  denotes the classical gamma function and 0J p(x, t) p(x, t) .  For example, 
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Definition 

 In the Caputo’s sense, the fractional derivative of p(x, t) (denoted by uD p(x, t) ) for 

1 ,      is defined as (Kilbas, et al., 2006),  
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Definition  

 The Laplace transform, (LT) of a Caputo fractional derivative is given as (Das, 2009, 

Kilbas, et al., 2006),  
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Analysis of the Proposed Method 

 Consider the time-fractional Belousov-Zhabotinsky, (TFB-Z) (1) with the diffusing 

constants for the concentration, 1 2 1,    
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Analysis of FRDTM 

 The functions p(x, t)  and q(x, t) are analytic and continuously differentiated in the 

interested domain.   In regard to the properties of differential transform, functions p(x, t)  and 

q(x, t) can be expressed as  
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where 
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Here,  is the fractional order and the t-dimensional spectrum functions kP (x) and kQ (x)  are 

respectively the transformed functions of p(x, t) and q(x, t) .  According  to Table 1, the 

iteration formulas for (7) is 
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From initial condition (8), we write  

  0 0p p(x,0), Q q(x,0).        (11) 

Substituting (11) into (10), we obtain the mP (x)  and mQ (x) values.  The inverse 

transformation of the sets k

m m 0{P (x)}   and k

m m 0{Q (x)}   are respectively 
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which gives the exact solution of (7). 

 

Table 1:  The essential operations of FRDTM 
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Solution for TFB-Z system of Equations 

 In this section, application of the FRDTM proposed method to the time-fractional 

Belousov-Zhabotinsky (TFB-Z) system of equations is presented. 

 

Example 1 

Consider the nonlinear TFB-Z system at 0    , then (7) reduced to 
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with the initial condition 
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The exact solution of (14) when 1   is 
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Here 1  is a positive parameter. 

      ■ 

 

FRDTM Solution: 

 From (10) with 0    , we have 
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Using the initial condition (11), we obtain the successive solutions 
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Similar expression for mP (x, t)  and mQ (x, t) respectively for m 5,6,7, L  can be achieved.  

Then, for system of (14), the FRDTM series solution is presented by (12). 

      ■ 

 

Example 2  

 

Consider the nonlinear TFB-Z system at     and 1  , then  (7) reduce to 
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where 1   is a positive parameter.              ■ 

 

FRDTM Solution: 

 

From (10) with      and  1  , we have 
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Using the initial condition (11), we obtain the successive solutions 
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Similar expression for mP  and mQ respectively for m 5,6,7, L  can be achieved.  Then, for 

system of (14) with initial condition (16), the FRDTM series solution is presented by (12). 

      ■ 

 

Remark   

 Assume that 
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 in (18), then the system reduces to the time-fractional Fisher's 

equation 
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which represents a model for the propagation of a mutant gene  (Fisher, 937), where 

p(x, t) denotes the population density, p(1 p) stand for the population supply due to births and 

deaths and the birth rate    (Fisher, 1937). The exact solution of (22) for the case when 1  is 

obtained from (20) and is given for positive parameter as 
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Figure 2: Solution profile with different values when t 0  for Example 1. 

 

Figure 3: Solution profile with different values when t 1  for Example 1. 

  

Figure 4: Solution profile with different values when t 3  for Example 1. 
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Figure 5: Solution profile with different values when t 5  for Example 1. 

  

Figure 6: The among FRDTM solution P
(4)

(x, t) and Q
(4)

(x, t)  for  Example 2. 

 

  

Figure 7: Solution profile with different values when t 0  for Example 2. 
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Figure 8: Solution profile with different values when t 1  for Example 2. 

  

Figure 9: Solution profile with different values when t 2  for Example 2. 

  

Figure 10: Solution profile with different values when t 5  for Example 2. 
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Conclusion 

Using reliable technique, namely, the fractional reduced differential transform 

method (FRDT) solved the time-fractional Belousov-Zhabotinsky system.  The outcomes of 

this research give the very effective and accurate (FRDT) method which had a wide ranging 

feasibility. Therefore, it can solve a lot of strong nonlinear fractional and classical PDEs that 

arisen in physics, chemistry, biology, mathematics, engineering, and so on. 
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Appendix 

 

 

Appendix 1  

 

 It should be noted that the exact solution for Example 1 and Example 2 can also have the following 

forms: 
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